A Utilization Perspective on Current and Emerging Biofuels

Charles J. MuellerSandia National Laboratories

Research Supported by

US DOE Office of Vehicle Technologies Program Manager: Kevin C. Stork

Biomass 2009: Fueling Our Future Gaylord National Hotel, National Harbor, Maryland March 18, 2009

Outline

- Briefly discuss why and how engine technologies are evolving
- New fuels can help achieve efficiency and emissions goals
- Introducing a new fuel is simple, isn't it?
- Some guiding truths to keep in mind

Factors Driving the Evolution of Transportation Engines and Fuels

- Energy security
- Environmental consequences

Reciprocating Engines Are Evolving

Gasoline Engine

(Spark Ignition)

Hot-Flame Region: NOx

Diesel Engine

(Compression Ignition)

Hot-Flame Region: NOx & Soot

HCCI Engine

(Homogeneous Charge Compression Ignition)

Low-Temperature Combustion: Ultra-Low Emissions (<1900K)

Reciprocating Engines Are Evolving (cont'd)

- Desire for increased efficiency is driving today's diesel and gasoline engines toward a common configuration:
 - Unthrottled
 - Compression ratio higher than today's spark-ignition
 - Compression ignition (perhaps with ignition assist)
 - Turbocharged
 - "Partially premixed" charge
- HCCI isn't the only promising advanced-combustion strategy
 - Mixing-controlled, high-efficiency, clean combustion (HECC)
- The optimal combustion strategy has yet to emerge
- Optimal fuel characteristics may be significantly different for different combustion strategies
 - Highly premixed (HCCI): difficult to autoignite, higher volatility
 - Mixing-contr. HECC: easy to autoignite, lower volatility, oxygenated

New Fuels Can Help – But They May Cause New Problems, Too

- Highly oxygenated fuel can help break long-standing trade-offs
 - Mixing-controlled HECC
 - Cooled EGR and/or NO_x
 aftertreatment required (low S, P
 content of fuel enables use of
 more-active catalysts)
 - 3 Mbpd of DGE not available!
- Fuel changes can lead to higher emissions (e.g., biodiesel NO_x ↑)
 - Need to understand fuel effects on combustion
 - Fuel molecular structure matters:
 Ethers are better than esters for smoke reduction due to prompt
 CO₂ production from esters

Source: Cheng, Upatnieks, and Mueller, Energy and Fuels **21**:1989-2002 (2007)

Introducing a New Fuel Is Simple... NOT!

- "Fit for purpose" ≡ fuel meets all customer requirements
 - Customers include
 - ➤ Vehicle operators, engine manufacturers, and fuel distributors
 - ➤ Also investors, environmentalists, politicians, ... <u>everyone!</u>

Customer requirements

- Cost (\$/J), ignition quality, distillation curve, availability, variability, energy density, oxidative and biological stability, lubricity, coldweather performance, elastomer compatibility, corrosivity, efficiency, emissions (regulated and unregulated), viscosity, flash point, low-temperature heat release, metal content, odor/taste thresholds, solubility in base fuel, water tolerance, specific heat, latent heat, toxicity (acute, chronic, reproductive), environmental fate, sulfur/ phosphorus content, GHG reduction, ...
- What you don't know about fuel properties can hurt you
 - ➤ Ethanol elastomer incompatibilities (late 1970s), MTBE odor and taste thresholds (late 1990s), biodiesel cold-flow performance and NO_x emissions (early 2000s to today)

The Scale of the Problem Is Important

- US consumes ~20 Mbpd of petroleum
 - Would fill a container 100 yd x 53.3 yd x ~1/2 mile deep <u>every day</u>
- Refinery operation = conservation of mass on a grand scale
 - Everything that goes in must come out as marketable products

A "minor" detail may have major consequences

San Francisco Bay Area

Canadian sulfur "pyramids"

Fort Mackay, Alberta, Canada

Source: Google Maps (http://maps.google.com)

Systems Analysis Is an Important Tool – But It Can Only Take Us So Far

- Feedstock, conversion technique, and final fuel specifications must be considered together for true process optimization
- Systems analysis can assist in avoiding known pitfalls and providing initial "best guess" configuration, but...
- With any new endeavor, there are
 - Knowns
 - Known unknowns
 - And <u>unknown unknowns</u>

These must be learned the hard way

 There will be an Edisonian component to the introduction of any new fuel, and we must be prepared to "fail our way forward"

Some Guiding Truths to Keep in Mind

- Increased efficiency is key goal of new engine technologies; compliant emissions enable market penetration
 - Engines are evolving to a common hardware configuration
 - Best combustion strategy unclear → fuel requirements may diverge
- New fuels can provide high efficiency and compliant emissions with less aftertreatment required
 - Biofuels will be blended with petroleum fuels and expected to meet existing specs
 - Some molecules are better than others, need fundamental understanding of fuel effects for guidance
- Thinking of introducing a new fuel?
 - The devil is in the details of "fit for purpose"
- Scale of the fuel-supply problem must not be underestimated
 - What happens to any biomass that isn't converted into fuel?

Some Guiding Truths to Keep in Mind

- Analysis should be used to avoid known pitfalls, but it alone cannot identify an optimal system
 - Unknown unknowns cannot be anticipated
 - We must be prepared to fail our way forward

Thank you for your attention!